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Abstract. Accurate flood risk assessments and early warning systems are needed to protect and prepare people in coastal areas 12 

from storms.  In order to provide this information efficiently and on time, computational costs need to be kept as low as 13 

possible. Reduced-complexity models using linear inertial equations and subgrid approaches have been used previously to 14 

achieve this goal. In this paper, for the first time, we developed a subgrid approach for the Linear Inertial Equations (LIE) that 15 

account for bed level and friction variations. We implemented this method in the SFINCS model. Pre-processed lookup tables 16 

that correlate water levels with hydrodynamic quantities make more precise simulations with lower computational costs 17 

possible. These subgrid corrections have undergone validation through a variety of conceptual and real-world application 18 

scenarios, including analyses of hurricane hazards and tidal fluctuations. We demonstrate that the subgrid corrections for 19 

Linear Inertial Equations significantly improve model accuracy while utilizing the same resolution without subgrid corrections.  20 

Moreover, coarser model resolutions with subgrid corrections can provide the same accuracy as finer resolutions without 21 

subgrid corrections. Limitations are discussed, for example, when grids do not adequately resolve river meanders, fluxes can 22 

be overestimated. Our findings show that subgrid corrections are an invaluable asset for hydrodynamic modelers striving to 23 

achieve a balance between accuracy and efficiency.  24 
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1 Introduction 25 

With hundreds of millions of people living in areas with an elevation of less than 10 meters above sea level (McGranahan et 26 

al, 2007), coastal zone flooding has large consequences for casualties and damage to real estate and infrastructure. To protect 27 

and mitigate flood damages and loss of life, a priori risk assessments may inform decision makers in what locations and under 28 

what circumstances flooding occurs, and what interventions to take. Furthermore, flood early warning systems provide 29 

information based on which evacuation of citizens can take place to save lives. Both the risk assessments and early warning 30 

systems should provide as accurate as possible information so as not to give false warnings or needlessly over or underestimate 31 

the extent and cost of interventions.  32 

 33 

For flood warnings, this means that simple bathtub approaches, where a peak water level is imposed on an area’s topography, 34 

do not suffice. They may overestimate the flood intensity because the surge hydrograph is not taken into account (Vousdoukas 35 

et al., 2016), or underestimate it due to lacking physics (e.g. wave effects, Didier et al., 2020) or lacking inputs such as 36 

roughness effects which would impede flow (Ramirez et al., 2016). Therefore, for a more accurate flood estimate, the dynamic 37 

aspects of floods such as the duration of an event, and the path that flood waters take should be considered. Furthermore, the 38 

compound nature of coastal area floods, which may be caused by marine surges, wave overtopping, coastal river discharges, 39 

and local rainfall needs to be taken into account. These dynamics and processes may be resolved using process-based numerical 40 

models which are based on the conservation of mass and momentum. However, classical full-physics models (ADCIRC; 41 

Luettich et al., 1992, Delft3D-FLOW; Lesser et al., 2004, MIKE; Warren and Bach, 1992 or SOBEK; Stelling et al., 1998) are 42 

computationally expensive, which limits their application for large areas and high resolution, and the exploration of 43 

uncertainties in flooding due to uncertain inputs.  44 

 45 

To that end, reduced-complexity models have been developed and applied in riverine settings and coastal applications. 46 

Examples include, among others, the LISFLOOD(-FP) model by Bates et al. (2010 and the SFINCS (Super-Fast INundation 47 

of CoastS) model by Leijnse et al. (2021)).  These models solve only the essential terms in the momentum equations using a 48 

simple numerical scheme and are as a consequence orders of magnitude faster than the conventional models. Still, the number 49 

of simulations that can be run is limited, as the numerical scheme is explicit and therefore strongly influenced by the spatial 50 

grid size (and associated time step).  51 

 52 

One way to further increase the computational speed is to apply a subgrid approach which makes use of the assumption that 53 

water level gradients are typically much smaller than topographic gradients. Defina (2000) presented shallow water equations 54 

with mass conservation corrections to account for wetting and drying areas, and corrections to the momentum equations to 55 

account for varying velocities. Casulli (2009) introduced a dual-grid approach with a higher resolution grid for the bathymetry 56 

and a lower resolution grid for the hydrodynamics where the depth and cross-sectional area were computed using the higher-57 
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resolution grid and stored in lookup tables which were used to evaluate the water levels on the lower resolution grid. Volp et 58 

al. (2013) extended Casulli’s approach to finite volumes and incorporated a subgrid-based method to compute advection and 59 

bottom friction under the assumptions of locally uniform flow direction and friction slope.  Sehili et al. (2014) showed that a 60 

subgrid approach could save an order of magnitude of computational cost without major accuracy loss in estuarine modeling. 61 

For coastal storm surge applications, Kennedy et al. (2019) developed a refined set of equations incorporating extra terms 62 

derived from an upscaling technique. These additional terms, emerging from the averaging of shallow water equations, account 63 

for the integral properties of fine-scale bathymetry, topography, and flow dynamics. This process is similar to how Boussinesq 64 

approximations are used for turbulence closure in Navier-Stokes models and involves using coarse-scale variables, such as 65 

averaged fluid velocity, to represent these fine-scale integrals.   They showed the improved performance of their model for the 66 

case of tidal flooding in a small bay. Woodruff et al. (2021) extended this analysis to a case of storm surge with realistic 67 

atmospheric forcing and reported a speedup of ADCIRC with a factor of 10-50. Similarly, Begmohammadi et al. (2023) 68 

adapted the numerical implementation of the real-time forecasting model SLOSH (Jelesnianski and Chester, 1992) to improve 69 

inundation performance in a coastal region with narrow channels. Woodruff et al. (2023) scaled up these approaches to the 70 

entire South Atlantic Bight and showed improved performance of a subgrid model to a conventional high-resolution model for 71 

Hurricane Matthew (2016).  72 

 73 

While these advances have led to great improvements in estuarine and storm surge modeling, the assumption of hydraulic 74 

connectivity of subgrid cells remains a challenge. To that end, Begmohammadi et al. (2021) removed the artifact of flows 75 

occurring through catchment boundaries that are not resolved in a subgrid approach by restricting flow to a predetermined 76 

path. Rong et al. (2023) introduced a new diffusive scheme in the existing subgrid channel approach to better model flood 77 

routing in rivers and adjacent flood plains. Yu and Lane (2011) applied a subgrid approach to resolve the roughness effects of 78 

small-scale structural elements in river floodplain cases, based on the method by Yu and Lane (2006) and applied a storage 79 

correction to the coarser scale flow grid based on the higher-resolution topographic information accounting for cell blockage 80 

and conveyance effects. 81 

 82 

However, none of these efforts combined a reduced-complexity model with a subgrid approach that accounts for bed level and 83 

friction variations for efficient compound flood modeling. In this paper, we explore a subgrid approach for the Linear Inertial 84 

Equations (Bates et al., 2010) that are used in the SFINCS model (Leijnse et al., 2021). All model results were obtained with 85 

the SFINCS ‘Cauberg’ release from November 2023 which is available as open-source code on GitHub and via 86 

https://www.deltares.nl/en/software-and-data/products/sfincs (van Ormondt et al., 2023).  Computational speed is determined 87 

by running the simulations on an Intel core I9 10980XE CPU. 88 

 89 
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The paper is organized as follows: we start with the governing equation in SFINCS, and a description of the new subgrid 90 

approach (Section 2).  We then demonstrate the accuracy of the subgrid method for some conceptual cases (Section 3). In 91 

Section 4, the subgrid method is verified against the default SFINCS results and observed data for two real-world cases: tidal 92 

propagation at the St. Johns River (Florida, USA) and the flooding during Hurricane Harvey (Houston, USA). The findings 93 

are discussed in Section 5 and our conclusions are presented in Section 6. 94 

2 Model description 95 

2.1 SFINCS governing equations 96 

The SFINCS model solves the shallow-water equations on a regular, staggered Arakawa-C grid. Its governing equations are 97 

based on the Linear Inertial Equations (LIEs; Bates et al., 2010). In particular, the volumetric flow rate per unit width at the 98 

interface between adjacent cells in the x direction for the current time step is computed with Equation 1:  99 

𝑞
𝑢
𝑡+∆𝑡 =

𝑞
𝑢
𝑡 − 𝑔∆𝑡ℎ𝑢

∆𝑧
∆𝑥

+ 𝐹∆𝑡

1 + 𝑔∆𝑡𝑛2ห𝑞
𝑢
𝑡 ห/ℎ𝑢

7
3ൗ

(1) 100 

where 𝑞௨
௧  is the flow rate at the previous time step, hu and Δz/Δx are the water depth and water level gradient at the cell interface 101 

u, g is the acceleration constant, n is the Manning’s n roughness and Δt is the time step. The water depth hu at the cell interface 102 

is computed in SFINCS as the difference between the maximum water level in the two adjacent cells and the maximum bed 103 

level in these cells. For the sake of brevity, additional forcing terms, such as wind drag, barometric pressure gradients, and the 104 

advection term, are represented in the combined term F.  105 

 106 

The mass continuity equation reads: 107 

𝑧𝑠 𝑚,𝑛
𝑡+∆𝑡 = 𝑧𝑠 𝑚,𝑛

𝑡 + ∆𝑡 ቆ
𝑞

𝑢 𝑚−1,𝑛
𝑡 − 𝑞

𝑢 𝑚,𝑛
𝑡

∆𝑥
+

𝑞
𝑣 𝑚,𝑛−1
𝑡 − 𝑞

𝑣 𝑚,𝑛
𝑡

∆𝑦
+

𝑆𝑚,𝑛

∆𝑥∆𝑦
ቇ (2) 108 

where zs is the water level in a grid cell (with index m in x-direction, n in y-direction), and Sm,n  is an (optional) source term in 109 

m3/s (e.g. to represent precipitation or a user-defined point source). In the remainder of this document, formulations will often 110 

be presented in the x direction, with the y direction treated analogously (with cell interface v).  111 

 112 

SFINCS uses a first-order explicit backward in time with a first-order central difference approximation of the spatial derivatives 113 

(BTCS-scheme).  114 
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2.2 Subgrid corrections in the momentum equation 115 

The goal of the subgrid approach is to compute flooding in a computationally efficient way using larger grids while retaining 116 

information of the higher-resolution elevation data. This is achieved by adjusting the conveyance depth hu and Manning’s 117 

roughness n in Equation 1 based on the local water level zu and the subgrid topography and roughness so that the unit discharge 118 

qu through a cell interface equals the average of the unit discharge of the subgrid pixels within the considered velocity point. 119 

An important assumption here is that the water level within the velocity point is constant, and therefore equal for all subgrid 120 

pixels. If the subgrid topography is known, and we assume that the water level zu is constant for all subgrid pixels in the 121 

velocity point, then representative values for hu and n (as well as the wet fraction φ) can be computed as a function of zu and 122 

stored in look-up tables for each velocity point. During a simulation, these look-up tables are queried at each time step to 123 

provide representative values for hu, n, and φ. This Section explains the theory behind the subgrid approach for the LIEs. The 124 

following sections describe the practical generation of the subgrid tables, and how these are queried during a SFINCS 125 

simulation. 126 

 127 

Following the notation of Kennedy et al. (2019), for a quantity Q, hydrodynamic variables coarsened to the grid scale are 128 

defined as: 129 

〈𝑄〉𝐺 =
1

𝐴
ඵ 𝑄𝑑𝐴

⬚

𝐴𝑊

(3) 130 

where AW is the wet portion of the grid cell area A. This will be called the “grid average” and is denoted with subscript “G”. 131 

 132 

On the other hand, the “wet average” of Q, denoted with subscript “W” is: 133 

〈𝑄〉𝑊 =
1

𝐴𝑊

ඵ 𝑄𝑑𝐴
⬚

𝐴𝑊

(4) 134 

 135 

With the wet average area is defined as: 136 

𝐴𝑊 = 𝜑𝐴 (5) 137 

where φ is the wet fraction of the cell area, then for hydrodynamic quantity Q: 138 

〈𝑄〉𝐺 = 𝜑〈𝑄〉𝑊 (6) 139 

 140 

The LIEs in their subgrid form using wet average quantities can be defined as: 141 

〈𝑞
𝑢
〉𝑊

𝑡+∆𝑡 =
〈𝑞

𝑢
〉𝑊

𝑡 − 𝑔 ∆𝑡 〈𝐻𝑢〉𝑊
∆𝑧
∆𝑥

+ 𝐹∆𝑡

1 + 𝑔 ∆𝑡 𝑛𝑢,𝑊
2  ห〈𝑞

𝑢
〉𝑊

𝑡 ห / 〈𝐻𝑢〉
𝑊

7
3ൗ

(7) 142 
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where 〈𝑞௨〉ௐ  and 〈𝐻௨〉ௐ  are the wet average unit discharge and water depth, respectively, and nu,W is the Manning’s n 143 

coefficient adjusted for subgrid variations. 144 

 145 

The expression for nu,W can be derived by considering Manning’s equation for open channel flow : 146 

〈𝑞
𝑢
〉𝑊 = √𝑖

〈𝐻𝑢〉
𝑊

5
3ൗ

𝑛𝑢,𝑊

(8) 147 

where i is the water level slope 
∆௭ೞ

∆௫
. In case of a stationary current and in the absence of external forcing, the subgrid form of 148 

the LIEs reverts to Equation 8. Consider now a velocity point with N subgrid pixels, each with its own bed level zb,k, and 149 

roughness nk (see Figure 1 and Figure 2). For a water level zu, the water depth in each pixel is hk = max(zu – zb,k, 0). The wet 150 

average unit discharge of the subgrid pixels within the velocity point is:  151 

〈𝑞
𝑢
〉𝑊 =

1

𝜑
𝑢

𝑁
√𝑖 

ℎ
𝑘

5
3ൗ

𝑛𝑘

𝑁

𝑘=1

(9) 152 

where 𝜑௨𝑁 is the number of wet pixels. Equation 9 can also be written as: 153 

〈𝑞௨〉ௐ = √𝑖 〈
𝐻௨

ହ
ଷൗ

𝑛
〉ௐ  (10) 154 

 155 

Substituting Equation 10 into Equation 8 yields the expression for nu,W (Equation 11): 156 

𝑛௨,ௐ =  
〈𝐻௨〉

ௐ

ହ
ଷൗ

〈
𝐻௨

ହ
ଷൗ

𝑛
〉ௐ

 (11) 157 

 158 

The subgrid form of the LIEs (Equations 7 and 11) can alternatively be expressed with grid average quantities. The SFINCS 159 

model uses these to solve the momentum balance, rather than the wet average quantities described above. Although somewhat 160 

less intuitive, using grid average quantities has a few practical advantages that will be discussed in the next section. To write 161 

the subgrid form of the LIEs using grid average quantities we simply substitute 〈𝑞௨〉ௐ  with 〈𝑞௨〉ீ/𝜑௨  and 〈𝐻௨〉ௐ  with 162 

〈𝐻௨〉ீ/𝜑௨ in Equation 7: 163 

〈𝑞
𝑢
〉𝐺

𝑡+∆𝑡 =
〈𝑞

𝑢
〉𝐺

𝑡 − 𝑔 ∆𝑡 〈𝐻𝑢〉𝐺
∆𝑧
∆𝑥

+ 𝜑
𝑢

𝐹∆𝑡

1 + 𝑔 ∆𝑡 𝑛𝑢
2  ห〈𝑞

𝑢
〉𝐺

𝑡 ห / 〈𝐻𝑢〉
𝐺

7
3ൗ

(12) 164 

where nu is 𝜑௨

ଶ
ଷൗ

𝑛௨,ௐ. 165 

 166 

Using the same logic as for Equation 11, nu (hereafter called the representative roughness) can also be written as: 167 
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𝑛𝑢 =
〈𝐻𝑢〉

𝐺

5
3ൗ

〈
𝐻𝑢

5
3ൗ

𝑛
〉𝐺

(13) 168 

For a known subgrid topography, and assuming a constant water level zu for all subgrid pixels in the velocity point, 〈𝐻௨〉ீ, nu, 169 

and φu can be stored in look-up tables as a function of zu. The generation of such tables is a pre-processing step that occurs 170 

only once when the model is set up, and is not repeated in the computational loop. First, a subgrid is generated that has the 171 

same orientation as the coarser hydrodynamic grid and a higher resolution. The level of refinement of the subgrid is an even 172 

integer and is typically chosen such that the subgrid resolution roughly equals that of the digital elevation model (DEM). Next, 173 

the subgrid model bathymetry is generated by interpolating a high-resolution DEM onto the subgrid. The roughness values are 174 

determined at the subgrid scale as well, for example by converting data from land use maps to Manning’s n values and 175 

interpolating these onto the subgrid. An example of topography and roughness on the subgrid at a velocity point is provided 176 

in Figure 1. Specifically, the high-resolution subgrid topography and roughness values around a single velocity point 177 

demonstrate that information from both sides (A and B) of the water level grid cell is included in calculating the flux over the 178 

cell face 𝑞௨ , between 𝑧, and 𝑧ାଵ,. 179 

 180 

Figure 1. High-resolution values of elevation 𝑧 (panel a) and roughness 𝑛 (panel b) at a U velocity point with a resolution of 𝑁=16×16 181 
per computational cell. Colors for elevation and roughness indicate subgrid-scale values which are aggregated on the computational 182 
black grid cells. Water level points are indicated by ‘+’, while velocity points are marked with ‘–’ and ‘|’.   183 

 184 

For each velocity point (here: u), we distinguish between two sides A and B of a computational cell (see Figure 1). The 185 

minimum (zb,A,min and zb,B,min) and maximum (zb,A,max and zb,B,max) pixel elevations at both sides are determined. The combined 186 

minimum and maximum elevations zmin and zmax are defined as:  187 

𝑧𝑚𝑖𝑛 = 𝑚𝑎𝑥൫𝑧𝑏,𝐴,𝑚𝑖𝑛, 𝑧𝑏,𝐵,𝑚𝑖𝑛൯ (14) 188 

𝑧𝑚𝑎𝑥 = 𝑚𝑎𝑥൫𝑧𝑏,𝐴,𝑚𝑎𝑥, 𝑧𝑏,𝐵,𝑚𝑎𝑥൯ (15) 189 

 190 

Values of 〈𝐻௨〉ீ, nu, and φu are now computed at discrete equidistant vertical levels, ranging between zmin and zmax as  191 
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: 192 

𝜑
𝑢,𝑚

=
1

𝑁
 𝑝൫𝑧𝑚 − 𝑧𝑏,𝑘൯

𝑁

𝑘=1

(16) 193 

where p(zm – zk) is 1 for zm > zk, and 0 for zm ≤ zk:  194 

〈𝐻𝑢〉𝐺,𝑚 =
1

𝑁
 max

⬚
൫𝑧𝑚 − 𝑧𝑏,𝑘, 0൯

𝑁

𝑘=1

(17) 195 

𝑛𝑢,𝑚 =
〈𝐻𝑢〉

𝐺,𝑚

5
3ൗ

1
𝑁

 ቀmax
⬚

ቀ𝑧𝑚 − max
⬚

൫𝑧𝑏,𝑘, 𝑧𝑚𝑖𝑛൯ , 0ቁ /𝑛𝑘ቁ
5

3ൗ
𝑁

𝑘=1

(18)
 196 

The number (M) of discrete vertical levels is defined by the user. We have found that around 20 levels are typically sufficient 197 

to accurately describe the subgrid quantities 〈𝐻௨〉ீ, nu and φu as a function of water levels between zmin and zmax and is used 198 

throughout this paper. The vertical distance between each level is defined as Δz = (zmax -  zmin) / (M – 1), and the elevation of 199 

each discrete level is zm = zmin + (m – 1) Δz (in which m goes from 1 to M). 200 

 201 

The subgrid tables and resulting flux (panel d) for the velocity point depicted in Figure 1, using 𝑀=20 are illustrated in Figure 202 

2. Red markers highlight the values at the discrete vertical levels. 203 

 204 

Figure 2.  Computation of subgrid quantities 〈𝑯𝒖〉𝑮 (panel a), nu (panel b) and φu (panel c) as a function of water level zu with 20 205 
discrete vertical levels (M = 20). The resulting flux divided by the square root of the water slope I is shown in panel d. The black line 206 
shows the exact solution obtained by solving Equations 5, 10, 11 and 17. The red line shows the estimate used in the SFINCS model, 207 
with (for z <= zmax) linear interpolation of look-up table values, and (for z > zmax) linear increase for 〈𝑯𝒖〉𝑮 and fit for nu. 208 

 209 
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Note that in Equation 18, to determine the representative roughness, the maximum of the pixel elevation and zmin is used. This 210 

is done to ensure that when the water level zu approaches zmin, i.e. when the highest of two adjacent grid cells becomes dry, nu 211 

will become very large, thereby effectively blocking flow between sides A and B. No water is allowed to flow when zu drops 212 

below zmin. 213 

 214 

The determination of nu for completely wet velocity points is more complicated, due to its non-linear relationship with zu at zu 215 

> zmax (see Figure 2b). It would be possible to store values of nu at many levels above zmax in the subgrid tables, but that could 216 

result in too large file sizes and memory use. To avoid this, SFINCS uses the following estimation for nu instead: 217 

𝑛𝑢 = 〈𝑛〉𝐺 −
〈𝑛〉𝐺 − 𝑛𝑢,𝑀

𝛽(𝑧𝑢 − 𝑧𝑚𝑎𝑥) + 1
(20) 218 

where 〈𝑛〉ீ is the average Manning’s n of all subgrid pixels, and 𝛽 is a fitting coefficient (with both these parameters also 219 

stored in the subgrid tables). The fitting coefficient 𝛽 is determined for each velocity point as: 220 

𝛽 =

〈𝑛〉𝐺 − 𝑛𝑢,𝑀

〈𝑛〉𝐺 − 𝑛𝑓𝑖𝑡
− 1

𝑧𝑓𝑖𝑡 − 𝑧𝑚𝑎𝑥

(21)
 221 

 222 

Here we have defined the level zfit at zmax + (zmax - zmin). The value for nfit at zfit is determined in a manner similar to Equation 223 

18: 224 

𝑛𝑓𝑖𝑡 =
൫〈𝐻𝑢〉𝐺,𝑀 + 𝑧𝑓𝑖𝑡 − 𝑧𝑚𝑎𝑥൯

5
3ൗ

1
𝑁

∑ ൭
𝑧𝑓𝑖𝑡 − max

⬚
൫𝑧𝑏,𝑘, 𝑧𝑚𝑖𝑛൯

𝑛𝑘
൱

5
3ൗ

𝑁
𝑘=1

(22)
 225 

The estimated value for nu above zmax using Equation 20 is shown in Figure 2b, with the blue marker indicating nfit. In very 226 

deep water (zu >> zmax), nu approaches 〈𝑛〉ீ, whereas for zu = zmax, nu is equal to nu,M. 227 

 228 

The behavior of nu in Figure 2b can seem non-intuitive. Whereas the grid average water depth 〈𝐻௨〉ீ  has a real physical 229 

meaning, the representative roughness nu should not be interpreted as a physical quantity but rather as a quantity that is used 230 

to control the flux through a velocity point, given a certain grid average water depth and water slope i. It is a function not only 231 

of the physical subgrid roughness but also of the subgrid water depth. 232 

 233 

As mentioned previously, SFINCS uses grid average, rather than wet average quantities. Theoretically, both options would 234 

yield identical results. The reason to choose a grid average approach is that the wet average depth and adjusted roughness can 235 

vary much more rapidly and irregularly with changing water levels than their grid average equivalents. As a result, many more 236 

vertical levels in the subgrid tables would be required to accurately describe wet average quantities as a function of z. This is 237 
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illustrated by considering a velocity point with a subgrid topography cross-section (Figure 3a). The average water depth and 238 

adjusted roughness as a function of water level z (Figures 3a and 3b, respectively). 239 

 240 

At each time step the model computes the water level zu at each velocity point using the maximum of the computed water 241 

levels in the two adjacent cells, i.e. 𝑧௨ = max
⬚

൫𝑧௦ ,, 𝑧௦ ାଵ,൯. This value is then used to query the look-up tables to find 242 

appropriate values of the quantities 〈𝐻௨〉ீ, nu, and φu. For partially wet velocity points (zmin < zu < zmax), a linear interpolation 243 

of the values in the tables is used. When the entire velocity point is wet (zu ≥ zmax), the depth 〈𝐻௨〉ீ increases linearly with zu: 244 

〈𝐻௨〉ீ = 〈𝐻௨〉ீ,ெ + 𝑧௨ − 𝑧௫ (19) 245 

2.3 Subgrid corrections in the continuity equation 246 

The subgrid continuity equation is written in terms of grid average fluxes as: 247 

𝑉𝑚,𝑛
𝑡+∆𝑡 = 𝑉𝑚,𝑛

𝑡 + ∆𝑡 ቀ൫〈𝑞
𝑢
〉𝐺,𝑚−1,𝑛

𝑡 − 〈𝑞
𝑢
〉𝐺,𝑚,𝑛

𝑡 ൯∆𝑦 + ൫〈𝑞
𝑣
〉𝐺,𝑚,𝑛−1

𝑡 − 〈𝑞
𝑣
〉𝐺,𝑚,𝑛

𝑡 ൯∆𝑥 + 𝑆𝑚,𝑛ቁ (23) 248 

Contrary to Equation 2, Equation 23 computes the wet volume at the next time step, rather than the water level. The 249 

corresponding water level zs is obtained from the continuity subgrid tables.  250 

 251 

To generate the subgrid tables first the minimum and maximum pixel elevations zmin and zmax, as well as the wet volume Vmax 252 

(defined as the wet volume between zmin and zmax) are determined for each hydrodynamic grid cell (e.g. Figure 3). Then the 253 

wet volume as a function of the local water level is determined: 254 

𝑉(𝑧) =
∆𝑥∆𝑦

𝑁
 max

⬚
(𝑧 − 𝑧𝑘, 0)

𝑁

𝑘=1

(24) 255 

where N is the number of subgrid pixels in a grid cell. Finally, a number (M) of discrete equidistant volumes are defined, 256 

ranging between 0 and Vmax, where each volume is Vm = (m – 1) Vmax / (M - 1). By iterating over each discrete volume Vm, we 257 

can (using linear interpolation of Equation 24) determine the corresponding water levels zs. An example is given in Figure 3 258 

which shows the volumes of the highlighted cell. 259 
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 260 

Figure 3. Panel A: values on the subgrid-scale of elevation z at a water level point (N=16x16). Panel B. Representation of water level 261 
zs as a function of volume V with 20 discrete volumes (M = 20). The black line shows the exact solution of Equation 24. The red line 262 
shows the estimate of zs used in the SFINCS model with, for zs <= zmax, linear interpolation of look-up table values, for zs > zmax a 263 
linear increase with V. 264 

During a simulation, the model computes at each time step the volume V in each cell and queries the look-up tables to find the 265 

matching value for zs. For partially wet cells (V < Vmax), a linear interpolation of the values in the tables is used. When the 266 

entire cell is wet (V ≥ Vmax), the water level zs increases linearly with V and is computed as 267 

𝑧𝑠 = 𝑧𝑚𝑎𝑥 +
𝑉 − 𝑉𝑚𝑎𝑥

∆𝑥∆𝑦
(25) 268 

Note that for pre-processing purposes, it would have been more straightforward to describe the wet volume V at equidistant 269 

vertical levels zm (similar to the approach for the momentum subgrid tables). However, during the simulation, the linear 270 

interpolation of subgrid data with equidistant volume levels is much more efficient.  271 

2.4 Pre and post-processing   272 

Pre-processing steps for SFINCS include creating a mask file describing (in)active cells, interpolating bathymetry and 273 

roughness values, and imposing boundary conditions. Tools to carry out these steps are available in both Delft Dashboard (Van 274 

Ormondt et al., 2020) and HydroMT-SFINCS (Eilander et al., 2023 or https://deltares.github.io/hydromt_sfincs/latest/), which 275 

both also have the capability to generate subgrid table files using high-resolution DEMs. 276 

 277 

SFINCS stores the output of hydrodynamic quantities on the (coarse) computational grid. These results can be further 278 

downscaled to higher-resolution flood maps at the original DEM resolution (assuming again that the computed water level in 279 
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a grid cell is representative of each subgrid pixel within that cell). Flood depths at the DEM scale are computed by subtracting 280 

the elevation of each DEM pixel from the water level in the cell. An example of the results is presented in Figure 10. 281 

3 Conceptual verification cases: straight and meandering channels 282 

The first conceptual test involves a 5 km long straight channel of 100 m wide with 1:5 side slopes (Figure 4a and c), for which 283 

a synthetic bathymetry was created. The slope of the channel is 10-4 downhill in y-direction, and the flood plains on either side 284 

of the channel have an elevation of 0.3 m above the water level in the channel. The Manning’s n roughness is set to 0.02 s/m1/3.  285 

Water level boundary conditions at the upstream and downstream sides are set to +0.25 m and -0.25 m, respectively, resulting 286 

in a 10-4 water level slope, equal to the channel slope. The analytical solution, using Manning’s equation for open channel flow 287 

yields a discharge of 360 m3/s. The input files for the 5m subgrid version of this model setup can be found in Appendix B1. 288 

 289 

The second test is identical to the first, except that it has a meandering channel. The meandering channel has a sinuosity Ω of 290 

1.32, i.e. the ratio between the length along the channel (6603 m) and its straight-line length (5000 m) (see e.g. Lazarus and 291 

Constantine, 2013 for background on river sinuosity). As the water levels upstream and downstream of the channel are kept 292 

the same, the water level slope in the meandering channel is smaller by a factor Ω, resulting in a (lower) analytical discharge 293 

of 313 m3/s.  294 
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 295 

Figure 4. Schematized channel used in the conceptual verification cases, including a straight channel (top view, panel a), a 296 
meandering channel (top view, panel b), and a cross-section (panel c).   297 

Simulations are carried out at various grid resolutions (5, 10, 20, 50, 100, 200, and 500 m), with both the subgrid method and 298 

regular versions of SFINCS. The subgrid simulations use a 1 m resolution subgrid, onto which the DEM is bilinearly 299 

interpolated. For the regular topography simulations, grid cell averaging is used to schematize the model bathymetry, in which 300 

the bed level of each cell is set equal to the mean of the DEM pixels within that cell. Figure 5 shows the regular model 301 

bathymetry at grid resolutions Δx of 10 m, 50 m, and 200 m for the meandering channel. It is clear that whereas the first two 302 

capture the channel topography reasonably well, the channel depth in the 200 m model is strongly underestimated, and its 303 

width is proportionally overestimated. 304 
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 305 

Figure 5 Schematized meandering channel bathymetry with regular topography for hydraulic grid resolutions Δx = 10 m, Δx = 50 306 
m, and Δx = 200 m   307 

In the first test (straight channel), the regular bathymetry models stay reasonably close to the analytical solution up to 308 

resolutions of 50m (blue bars in Figure 6 – panel A). The accuracy of the coarser models however degrades significantly with 309 

decreasing grid resolution as is to be expected. The channel depth in the coarser models is increasingly underestimated, and 310 

even though its width is proportionately overestimated, the strongly non-linear relationship between water depth and discharge 311 

results in a decrease of the discharge with decreasing grid resolution. In contrast, the discharges computed by the subgrid 312 

models are within 2% of the analytical solution across all grid resolutions (red bars in Figure 6 – panel A), proving that, at 313 

least for very simple conceptual cases, the subgrid method presented here is accurate. 314 
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 315 

Figure 6.  Effect of grid resolution Δx on computed discharges for regular and subgrid topography in straight (panel a) and 316 
meandering (panel b) channel.  317 

In the second test (meandering channel), the trend of the regular models is similar to those in the first test (blue bars in Figure 318 

6 – panel B), but the performance is lower than in the straight channel case, with the discharge for the two coarsest regular 319 

models going to zero. This is caused by the fact that the hydraulic connection between some channel cells is broken in the 320 

coarsest models (see also Figure 5). 321 

 322 

The subgrid models in the second test show very good accuracy at resolutions up to 50 m. Coarser models start to overestimate 323 

the discharge. The 500 m model in particular computes a discharge of 473 m3/s (an overestimation of the analytical discharge 324 

by ~51%). There are two reasons for this: as the coarse mesh does not capture the scale of the meanders, the channel is 325 

effectively schematized as a straight channel with a length of 5000 m. This leads to an overestimation of the true water level 326 

slope and resulting wet average flux. Secondly, meanders inside a grid cell result in a larger wet fraction, which the model 327 

“interprets” as a wide channel, leading to a further overestimation. 328 

 329 

For rivers with meanders that are not resolved by the model grid, we can approximate the discharge overestimation as a function 330 

of the channel sinuosity: 331 

ொ

ொೝ
= Ω

ଷ
ଶൗ (26)  332 

where Ω is the sinuosity, Qr is the true discharge and Qm is the discharge computed with the subgrid method (see Appendix A 333 

for the derivation of Equation 26). Equation 26 suggests that the discharge overestimation in the 500 m subgrid model (which 334 
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does not resolve the meandering at all) is ~52 % (1.323/2), which closely matches the computed overestimation of ~51% 335 

reported earlier.  336 

4 Real-world application cases 337 

4.1 Tidal propagation St. Johns River 338 

Leijnse et al. (2021) described SFINCS model results for Hurricane Irma (2017) along the St. Johns River (Florida, USA). The 339 

length of the river is about 170 kilometers from its mouth to Lake George upstream (Figure 7 – panel A) where still a small 340 

tidal signal remains. Its width varies between 400 m and 5 km. Although the model showed good skill when compared to a 341 

full-physics Delft3D model, its 100-meter grid resolution proved insufficient to adequately propagate the tide into the estuary.  342 

 343 

In this test case, the St. Johns River SFINCS model from Leijnse et al. (2021) is adapted and tidal propagation into the river is 344 

simulated at several horizontal resolutions (25, 50, 100, 200, and 500 m) using both the regular and subgrid approach. The 345 

topography and bathymetry data are improved by using data obtained from the Continuously Updated Digital Elevation Model 346 

(CUDEM; CIRES, 2014). The Manning friction coefficient in the river is set to 0.02 s/m1/3. The offshore boundary water levels 347 

are derived from TPXO 8.0 tidal components (Egbert and Erofeeva, 2002). Computed water levels are validated against 348 

observed tidal components from 11 tide stations (retrieved through Delft Dashboard; van Ormondt et al., 2020) (Figure 7 – 349 

panel A). The input files for the 25m subgrid version of this model setup can be found in Appendix B2. 350 

 351 

Simulations are carried out over a one-month period to assess the model’s capability to propagate the tide into the river. 352 

Analysis of the main tidal component M2 across different model variations reveals considerable differences in the upstream 353 

propagation (Figure 7B). The amplitude of M2 is approximately 75 cm at the offshore boundary and sharply decreases near 354 

the city of Jacksonville, where the river narrows significantly (about 40 kilometers upstream along the river). At 100-meter 355 

resolution, the SFINCS model with regular topography can reproduce the main trends but underestimates the tidal amplitudes 356 

relative to observations (Figure 7B), as in Leijnse et al. (2021). At the coarser 500-meter resolution, this underestimation of 357 

amplitude is significantly stronger and the tide arrives too late (Figure 7C).  The tidal propagation only accurately matches the 358 

observations when utilizing a 25-meter resolution with the regular topography. 359 

 360 

The subgrid version of SFINCS, on the same 100-meter grid resolution, mitigates the underestimation of the regular (non-subgrid) 361 
version (Figure 7B). The median error of M2 amplitude prediction over the 11 observation stations decreases from 2.6 cm to 0.4 cm, 362 
the phase error from 4.1 to 2.1 degrees, and the overall RMSE from 8.0 to 6.4 cm (Overview of the St. Johns River near Jacksonville, 363 
FL, USA (Panel A), with analysis points (green dots) and tide gauges (yellow dots). Panel B: Observed (black dots) and modeled 364 
(colors) M2 tidal amplitudes along the river from downstream to upstream. Panel C: Observed (black dots) and modeled (colors) 365 
M2 tidal phases along the river. Different colors represent variations in the SFINCS model setup: red indicates the regular non-366 
subgrid version, while blue denotes the subgrid version, with decreasing color intensity indicating a decrease in model resolution. 367 
M2 phase is converted from degrees to hours, assuming one degree equals 12.42 hours / 360 degrees. The coordinate system is WGS 368 
84 / UTM 15 N (EPSG 32615).  369 
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Table 1). Further analysis of different grid resolutions via the subgrid method illustrates that, even with coarser grid resolutions, 370 

the subgrid-enabled SFINCS version propagates the tide inland properly, even at very coarse resolutions of 500 meters. The 371 

tidal phasing is also generally more accurately resolved with subgrid versus the regular SFINCS mode. 372 

 373 

Computing the RMSE over the whole month tidal prediction shows that error increases from about 8 cm to about 20 cm for coarser 374 
grid resolutions in regular SFINCS mode (Overview of the St. Johns River near Jacksonville, FL, USA (Panel A), with analysis 375 
points (green dots) and tide gauges (yellow dots). Panel B: Observed (black dots) and modeled (colors) M2 tidal amplitudes along 376 
the river from downstream to upstream. Panel C: Observed (black dots) and modeled (colors) M2 tidal phases along the river. 377 
Different colors represent variations in the SFINCS model setup: red indicates the regular non-subgrid version, while blue denotes 378 
the subgrid version, with decreasing color intensity indicating a decrease in model resolution. M2 phase is converted from degrees 379 
to hours, assuming one degree equals 12.42 hours / 360 degrees. The coordinate system is WGS 84 / UTM 15 N (EPSG 32615). 380 
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Table 1). However, when incorporating subgrid corrections this remains stable around this value of 8 cm. While high tide peak 381 

predictions remain robust for the subgrid SFINCS version at larger grid resolutions (Table 1), the performance decreases more 382 

significantly for low water peaks, indicating that during these periods, the low tide flushing of the river is still underestimated.  383 

Integrating the subgrid raises computational costs by around 0-72% (44% on average) as a result of the extra overhead involved 384 

in querying the subgrid tables. 385 

 386 

Figure 7. Overview of the St. Johns River near Jacksonville, FL, USA (Panel A), with analysis points (green dots) and tide gauges 387 
(yellow dots). Panel B: Observed (black dots) and modeled (colors) M2 tidal amplitudes along the river from downstream to 388 
upstream. Panel C: Observed (black dots) and modeled (colors) M2 tidal phases along the river. Different colors represent variations 389 
in the SFINCS model setup: red indicates the regular non-subgrid version, while blue denotes the subgrid version, with decreasing 390 
color intensity indicating a decrease in model resolution. M2 phase is converted from degrees to hours, assuming one degree equals 391 
12.42 hours / 360 degrees. The coordinate system is WGS 84 / UTM 15 N (EPSG 32615).  392 
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Table 1. Overview of model skill and computational expense for evaluated scenarios of inland tidal propagation at the St. Johns 393 
River, FL. Metrics include RMSE of overall difference in time-series compared to observations, RMSE of high water peaks, RMSE 394 
of low water peaks, difference in M2 amplitude, and difference in M2 phase, all presented as medians over 11 observation stations. 395 
The last column shows the runtime in seconds, measured on an Intel Core i9-10980XE CPU. 396 

Run RMSE 

overall [cm] 

RMSE high 

water peak 

[cm] 

RMSE low 

water peak 

[cm] 

Amplitude 

difference 

M2 [cm] 

Phase 

difference 

M2 [°] 

Model 

runtime 

[sec] 

regular_25m 7.7 6.6 9.1 -0.3 1.0 64512 

regular_50m 7.8 5.7 10.1 -1.7 5.0 7596 

regular_100m 8.0 4.3 12.5 -2.6 4.1 727 

regular_200m 12.0 5.3 19.5 -6.7 6.5 110 

regular_500m 16.1 8.3 25.4 -10.9 21.4 28 

regular_1000m 20.1 14.5 - -15.9 50.1 11 

subgrid_25m 8.7 8.3 7.3 1.5 1.2 98806 

subgrid_50m 7.5 7.6 6.1 0.6 1.5 12127 

subgrid_100m 6.4 5.3 6.1 -0.4 2.1 1251 

subgrid_200m 7.8 7.3 8.2 -1.0 1.5 159 

subgrid_500m 8.2 6.6 8.7 -0.3 -1.5 28 

subgrid_1000m 7.8 7.1 8.5 0.7 -4.7 15 

  397 

https://doi.org/10.5194/egusphere-2024-1839
Preprint. Discussion started: 31 July 2024
c© Author(s) 2024. CC BY 4.0 License.



  

 

20 
  

4.2 Pluvial flooding during Hurricane Harvey 398 

Sebastian et al. (2021) used SFINCS to hindcast the flood extent and flood depth during Hurricane Harvey (2017) in Houston, 399 

TX. The model was validated against water level time series at 21 United States Geological Survey (USGS) observation points 400 

and 115 high water mark (HWM) locations (Figure 8). The original model was run with a regular 25-meter resolution grid 401 

based on a high-resolution continuous topo-bathymetry across the area of interest. The model had a fair correlation with 402 

observed time series and HWM across the study area.  403 

 404 

Figure 8. Modeled flood inundation in the urban areas of Houston, TX, simulated with SFINCS at a 25m resolution with subgrid 405 
corrections. Water depths less than 0.10 m are excluded for clarity. USGS stream gauges (red) and high-water marks (HWMs, black) 406 
used for model validation are shown as solid circles. Six USGS stations, presented as time series in Figure 9, are marked with circles 407 
and stars, including their station numbers. A zoom-in of the midstream portion of Brays Bayou is shown in Figure 10. The coordinate 408 
system is WGS 84 / UTM 15 N (EPSG 32615). © Microsoft. 409 

 410 

In this field case, the model setup is adapted and flooding across Houston is simulated at several horizontal resolutions. In 411 

particular, three variations for regular SFINCS (25, 50, and 100 meters) and 5 variations of subgrid (same resolutions as regular 412 

mode, including 200, and 500 meters) were created. Model settings were based on Sebastian et al. (2021) model except for the 413 

model resolution. Friction and infiltration capacity were cell-averaged from the original setup for the coarser model runs. The 414 

input files for the 25m subgrid version of this model setup can be found in Appendix B3. 415 

 416 
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Almost all model versions reproduce the general shape of the observed hydrograph. However, the coarser regular version of 417 

SFINCS results in larger errors mainly due to an overestimation of the water level (Figure 9). The overestimation is driven by 418 

an incorrect representation of the bed level which is averaged across larger areas and can therefore not depict the local bayous 419 

with coarser grid cells. SFINCS with the subgrid corrections improves the model skill (Table 2). For example, when comparing 420 

the 25-meter regular with the subgrid-enabled SFINCS model with the same computational resolution, the Nash-Sutcliffe 421 

Efficiency(NSE) increases from 0.35 to 0.58. NSE is a statistical metric used to evaluate the predictive accuracy of models by 422 

comparing observed and predicted values. NSE values range from 0 to 1, with values closer to 1 indicating a better-performing 423 

model. An NSE value of 0 means the model's predictions are as accurate as using the mean of the observed data as the predictor. 424 

Model skill increases because more topo-bathymetry information is considered per grid cell via the subgrid correction in the 425 

momentum and continuity equations (see Sections 2.2 and 2.3). Despite the subgrid correction, model skill still decreases with 426 

decreasing computational resolution. For example, a 500-meter simulation with subgrid correction has an NSE close to zero.  427 

Including the subgrid feature increases computational expense by 73 to 184 % (average of 129%), because of additional 428 

overhead in querying the subgrid tables. The highest model skill is obtained with the finest model resolution (25m used here) 429 

including subgrid. Selecting the model resolution of choice is a balancing act between model skill and computational expense. 430 

 431 

SFINCS can store the maximum computed water level across the computational domain, with the capability to downscale this 432 

data to higher-resolution flood maps as part of a post-processing step. In particular, to calculate flood depths at the DEM scale, 433 

the elevation of individual DEM pixels is subtracted from the corresponding cell's water level (see Section 2.4). For instance, 434 

the results demonstrate that the 25-meter resolution outcomes and those downscaled to a 100-meter subgrid are quite similar. 435 

This is illustrated in Figure 10, which shows modeled flood inundation in the midstream portion of Brays Bayou using four 436 

different SFINCS model options. Panels A and C in Figure 10 highlight the comparison: Panel A presents the regular 25-meter 437 

resolution, while Panel C depicts the 'subgrid 100m – downscaled' method, which applies a downscaling method to the DEM 438 

resolution as a post-processing step. However, the 100-meter subgrid resolution runs 35 times faster than the 25-meter regular 439 

SFINCS version, while maintaining a similar level of accuracy (see Table 2) and thus, producing comparable extents of 440 

flooding. Nonetheless, it is important to note that the 100-meter resolution results tend to provide a coarser visual representation 441 

of flood extents, often overestimating them (see panels B and D in Figure A1) for both the regular and subgrid versions of 442 

SFINCS. 443 

  444 
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Table 2. Overview of model skill and computational expense for evaluated scenarios of pluvial flooding during Harvey. Model skill 445 
metrics for time series, including NSE (Nash-Sutcliffe Efficiency), MAE (Mean Absolute Error), RMSE (Root Mean Square Error), 446 
and bias, as well as MAE for high-water marks (HWMs). The last column shows the runtime in seconds, measured on an Intel Core 447 
i9-10980XE CPU. 448 

 
Time series 

   
HWM 

 

simulation NSE [-] MAE [m] RMSE [m] bias [m] MAE [m] run time [s] 

regular_25m 0.349 1.68 2.14 -0.548 0.73 12136 

regular_50m -0.007 2.08 2.58 0.405 0.68 3552 

regular_100m -1.988 3.41 3.94 2.493 0.84 116 

subgrid_25m 0.581 1.29 1.58 -0.842 0.89 20951 

subgrid_50m 0.540 1.3 1.57 -0.963 0.94 2801 

subgrid_100m 0.495 1.35 1.62 -0.984 0.98 341 

subgrid_200m 0.310 1.62 1.94 -1.226 1.09 38 

subgrid_500m 0.011 2.05 2.47 -1.671 1.27 6 
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 449 

Figure 9. Overview of (computed) water levels during Hurricane Harvey. Comparison between modeled (colored lines) and observed 450 
(black lines) hydrographs at six USGS gauge locations (labeled in Figure 8): Panels A. Buffalo Bayou (USGS 08073600); B. White 451 
Oak Bayou at Main Street (USGS 08074598); C. Brays Bayou at MLK Jr. Blvd (USGS 08075110); D. Sims Bayou at Houston, TX 452 
(USGS 08075500); E. Vince Bayou at Pasedena, TX (USGS 08075730); f Greens Bayou nr Houston, TX (USGS 08076000). Different 453 
colors represent variations in the SFINCS model setup. Red is used for the regular version of SFINCS (non-subgrid). Blue is used 454 
for the subgrid version of SFINCS. Decreasing color intensity depicts a decrease in model resolution. 455 

https://doi.org/10.5194/egusphere-2024-1839
Preprint. Discussion started: 31 July 2024
c© Author(s) 2024. CC BY 4.0 License.



  

 

24 
  

 456 

Figure 10. Modeled flood inundation in the midstream portion of Brays Bayou for 4 different SFINCS model options: A) regular 457 
25m, b) regular 100m, c) ‘subgrid 100m – downscaled’ is using the same model simulation as ‘subgrid 100m – direct’ (panel D), but 458 
then applying a downscaling method to the DEM resolution as a post-processing step. Water depths less than 0.10 m have been 459 
excluded for visual purposes. The locations of USGS stream gauges (red) and HWMs (black) used for the model validation are shown 460 
as solid circles.  The coordinate system of this figure is WGS 84 / UTM 15 N (EPSG 32615). © Microsoft. 461 

  462 
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5 Discussion 463 

The integration of subgrid corrections into SFINCS has led to significant enhancements in accuracy, as evidenced in both 464 

conceptual verification cases (Section 3) and real-world scenarios, including tidal propagation (Section 4.1) and pluvial 465 

flooding (Section 4.2). This section delves into the impact of these accuracy enhancements and outlines the remaining 466 

challenges and areas for future research, particularly concerning flow-blocking features and the overestimation of fluxes in 467 

meandering systems. 468 

 469 

The ability to achieve improved accuracy on the same grid resolution signifies progress. However, in practical terms, a more 470 

accurate simulation also allows for the use of coarser model resolutions. This is particularly advantageous given SFINCS's 471 

explicit numerical scheme, enabling faster and thus more efficient compound flood modeling. For example, in the real-world 472 

application cases of tidal propagation (Section 4.1) and pluvial flooding (Section 4.2), a subgrid model at 100-meter resolution 473 

demonstrates comparable, if not higher, performance to the regular 25-meter resolution SFINCS model. However, the 474 

computational cost is significantly lower with a factor of 35 to 50 speedup. The introduction of subgrid corrections does 475 

introduce additional computational expenses versus regular SFINCS. For identical model resolutions, the inclusion of subgrid 476 

corrections for momentum and continuity results in an increase in computational costs by 44 to 129%. 477 

 478 

The downscaling routines implemented also allowed for the use of the high-resolution data in the post-processing step. 479 

However, the simple subtraction of the computed water level and high-resolution topography (introduced in Section 2.4 and 480 

applied in Section 4.2) might result in water in an area that would not be flooded using high-resolution models. While this 481 

might not affect the accuracy compared to water level stations, it does influence results and flood extents. In particular, 482 

disconnected grid cells might pop up behind levees and other flow-breaking features which form a challenge when 483 

communicating the results to stakeholders.  Moreover, the presented downscaling routine has limited use for areas with steep 484 

gradients where the assumption of a constant water level per computational cell is invalid. Therefore, exploring more 485 

sophisticated hybrid surrogate models might improve the dynamic evolution of the flood extent (Fraehr et al., 2022).  486 

 487 

Addressing subgrid connectivity poses a significant challenge for the implementation described in this paper and the broader 488 

modeling community. In contrast to approaches that relied on cell and edge clones (Begmohammadi et al., 2021) or artificial 489 

diffusion (Rong et al., 2023), SFINCS employs a subgrid weir formulation. This formulation, which is applied snapped to the 490 

grid, controls the flow between two cells but requires the creation of subgrid features during a pre-processing phase. To date, 491 

these features have been manually identified. However, there is ongoing research into algorithms capable of detecting flow-492 

blocking features as well as the integration of methods from existing literature or direct modifications to the subgrid lookup 493 

tables to account for this. 494 

 495 
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Similarly, the overestimation of fluxes in situations with unresolved meanders continues to be a challenge. This issue is not 496 

exclusive to SFINCS's implementation of subgrid corrections but is a common challenge across subgrid modeling. Various 497 

estimates for the sinuosity Ω have been reported in scientific literature. Lazarus and Constantine (2013) suggest that the typical 498 

range for Ω lies between 1 and 3, where 1 corresponds to a straight channel and 3 represents the upper limit for natural, freely 499 

migrating meandering rivers. Hence, when using a computational grid that does not resolve the river meanders, the presented 500 

subgrid approach may overestimate discharges by more than a factor of 5 (or 33/2). To avoid this, it is recommended that the 501 

grid spacing of the computational grid does not exceed the width of the river channel.    502 

6 Conclusions 503 

Large-scale flood models require high accuracy at acceptable computational times. One strategy to achieve this is to use 504 

information available at a higher resolution than the hydrodynamic grid resolution in models through subgrid corrections. This 505 

paper describes a set of subgrid corrections to the Linear Inertial Equations (LIE) using grid average quantities (depth, 506 

representative roughness, wet fraction, and flux to the momentum equations and for the wet volume in the continuity equation) 507 

which were implemented in SFINCS. The model uses pre-processed subgrid tables that correlate water levels with 508 

hydrodynamic quantities by assuming constant water levels for all subgrid pixels.  509 

 510 

The conceptual case of a straight channel showed good skill in terms of discharge fluxes with the subgrid model regardless of 511 

the model resolution while the accuracy of the regular models without subgrid correction decreased significantly with 512 

decreasing resolution. For the meandering channel differences start to emerge for coarser model resolutions with and without 513 

subgrid corrections. In particular, the difference in discharge estimation was overestimated by 50% for the coarsest subgrid 514 

model used.  The ratio between the length along the channel and its straight-line length (also known as sinuosity or Ω) served 515 

as a valuable metric for quantifying flux overestimations. The conceptual cases gave confidence that the corrections were 516 

correctly implemented while also highlighting their limitations in grids that do not adequately resolve river meanders. In 517 

particular, we introduced an equation that allows for approximation of the discharge overestimation as a function of the channel 518 

sinuosity: 519 

 520 

Real-world application cases further validated the subgrid corrections' benefits. For tidal propagation in the St. Johns River, 521 

the subgrid model with a 500-meter resolution matched the accuracy of the 25-meter standard SFINCS model. Similarly, in 522 

modeling pluvial flooding during Hurricane Harvey, a 25-meter resolution SFINCS model was necessary to achieve a Nash–523 

Sutcliffe Efficiency (NSE) of 0.35, while the subgrid variant at the same resolution outperformed this with an NSE of 0.58 524 

(where a score of 1 would be perfect) and maintained comparable accuracy even at a coarser 100-meter resolution. Overall, 525 

the implementation of subgrid corrections for LIE within SFINCS shows promise for enhancing model accuracy and reducing 526 
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computational demands in compound flooding simulations, marking a significant step forward in the field of hydrodynamic 527 

modeling. 528 

 529 
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Appendices 545 

Appendix A: Derivation of discharge overestimation due to unresolved meandering    546 

The subgrid approach presented in this paper may result in an overestimation of fluxes between grid cells in places where river 547 

meanders are not sufficiently resolved by the computational grid. The overestimation may be expressed as the ratio between 548 

the computed and theoretical fluxes. In this appendix, we describe a simple relation between this ratio and the river sinuosity 549 

in cases where the model grid does not resolve the meanders at all. The sinuosity is defined as the ratio between the length 550 

along the channel and its straight-line length (e.g. Lazarus and Constantine, 2013).  551 

 552 

Figure A1. Conceptual figure of the sinuosity which is a defined as the ratio between the length along the channel and its straight-553 
line length 554 

Using Manning’s formula, the theoretical discharge can be described with: 555 

𝑄 =
𝑊ට∆𝑧

𝐿
𝐻

ହ
ଷൗ

𝑛
(𝐴. 1)

 556 

where W is the river width, L is the length of the center line of river stretch, ∆z is the water level difference over the river 557 

stretch, H is the channel depth (assumed uniform), and n is the Manning’s roughness coefficient. 558 

Inside a model using the subgrid method, the discharge computed at the cell interface will be: 559 

𝑄 = ∆𝑥
𝜑ට∆𝑧

∆𝑥
𝐻

ହ
ଷൗ

𝑛
(𝐴. 2)

 560 

where ∆x is the grid size, φ is the wet fraction of the velocity point, and H is the “wet-average” depth. 561 

We assume here that the sinuosity is:  562 

Ω =
𝐿

∆𝑥
(𝐴. 3) 563 

Furthermore, the wet fraction φ in A.2 can be written defined as the river area W x L divided by the cell area: 564 
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𝜑 =
𝑊𝐿

∆𝑥ଶ
=

𝑊

∆𝑥
𝛺 (𝐴. 4) 565 

After substituting φ in Eq. A.2 with Eq. A.4, we can write the overestimation (i.e. the ratio of the computed and theoretical 566 

discharge 𝑄 / 𝑄) as: 567 

ொ

ொೝ
=

∆௫

ೈ
∆ೣ

ට∆
∆ೣ

ಹ
ఱ

యൗ



ೈට∆
ಽ

ಹ
ఱ

యൗ



= Ωට


∆௫
= Ω√Ω = Ω

ଷ
ଶൗ (𝐴. 5) 568 
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Appendix B: Input files for cases considered in this manuscript 569 

Conceptual verification cases: straight and meandering channels 570 

mmax           = 11 571 
nmax           = 26 572 
dx             = 200 573 
dy             = 200 574 
x0             = -1000 575 
y0             = 0 576 
rotation       = 0 577 
latitude       = 0 578 
crsgeo         = 0 579 
tref           = 20190101 000000 580 
tstart         = 20190101 000000 581 
tstop          = 20190103 000000 582 
tspinup        = 60 583 
dtmapout       = 86400 584 
dthisout       = 600 585 
dtmaxout       = 3600 586 
dtwnd          = 1800 587 
alpha          = 0.5 588 
theta          = 0.95 589 
huthresh       = 0.005 590 
manning        = 0.02 591 
manning_land   = 0.02 592 
manning_sea    = 0.02 593 
rgh_lev_land   = 0 594 
zsini          = 1 595 
qinf           = 0 596 
rhoa           = 1.25 597 
rhow           = 1024 598 
dtmax          = 999 599 
maxlev         = 999 600 
bndtype        = 1 601 
advection      = 0 602 
baro           = 0 603 
pavbnd         = 0 604 
gapres         = 101200 605 
advlim         = 5 606 
stopdepth      = 100 607 
depfile        = sfincs.dep 608 
mskfile        = sfincs.msk 609 
indexfile      = sfincs.ind 610 
bndfile        = sfincs.bnd 611 
bzsfile        = sfincs.bzs 612 
srcfile        = sfincs.src 613 
disfile        = sfincs.dis 614 
sbgfile        = sfincs.sbg 615 
obsfile        = sfincs.obs 616 
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crsfile        = sfincs.crs 617 
manningfile    = sfincs.manning 618 
inputformat    = bin 619 
outputformat   = net 620 
cdnrb          = 3 621 
cdwnd          = 0  28  50 622 
cdval          = 0.001      0.0025      0.0015 623 
hmaxfile       = hmax.txt 624 
zsfile         = zs.txt 625 
dtout          = 3600 626 
dttype         = min 627 
storevelocity  = 1 628 
storevel       = 1 629 

Tidal propagation St. Johns River 630 

mmax                 = 2720 631 
nmax                 = 5520 632 
dx                   = 25 633 
dy                   = 25 634 
x0                   = 459437.0 635 
y0                   = 3375791.0 636 
rotation             = -164.0 637 
epsg                 = 32617 638 
latitude             = 0.0 639 
tref                 = 20180901 000000 640 
tstart               = 20180901 000000 641 
tstop                = 20180931 000000 642 
tspinup              = 60.0 643 
dtout                = 86400 644 
dthisout             = 600.0 645 
dtrstout             = 0.0 646 
dtmaxout             = 99999999999 647 
trstout              = -999.0 648 
dtwnd                = 1800.0 649 
alpha                = 0.5 650 
theta                = 1.0 651 
huthresh             = 0.01 652 
manning              = 0.04 653 
manning_land         = 0.04 654 
manning_sea          = 0.02 655 
rgh_lev_land         = 0.0 656 
zsini                = 0.0 657 
qinf                 = 0.0 658 
rhoa                 = 1.25 659 
rhow                 = 1024.0 660 
dtmax                = 60.0 661 
advection            = 2 662 
baro                 = 0 663 
pavbnd               = 0 664 
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gapres               = 101200.0 665 
stopdepth            = 100.0 666 
crsgeo               = 0 667 
btfilter             = 60.0 668 
viscosity            = 1 669 
depfile              = sfincs.dep 670 
mskfile              = sfincs.msk 671 
indexfile            = sfincs.ind 672 
bndfile              = ..//..//setup//sfincs.bnd 673 
bzsfile              = ..//..//setup//sfincs.bzs 674 
sbgfile              = sfincs_subgrid.nc 675 
obsfile              = ..//..//setup//noaa_xtide_v4_added_debug_points.obs 676 
inputformat          = bin 677 
outputformat         = net 678 
cdnrb                = 3 679 
cdwnd                = 0.0 28.0 50.0 680 
cdval                = 0.001 0.0025 0.0015 681 

Conceptual verification cases: straight and meandering channels 682 

mmax                 = 2632 683 
nmax                 = 1555 684 
dx                   = 25 685 
dy                   = 25 686 
x0                   = 243943.538 687 
y0                   = 3279280.3807 688 
rotation             = 0 689 
epsg                 = 32615 690 
tref                 = 20170825 000000 691 
tstart               = 20170825 000000 692 
tstop                = 20170831 000000 693 
dtout                = 86400 694 
dthisout             = 600 695 
dtmaxout             = 518400 696 
dtwnd                = 600 697 
alpha                = 0.5 698 
theta                = 1 699 
huthresh             = 0.05 700 
rgh_lev_land         = 0 701 
zsini                = 0 702 
qinf                 = 0 703 
rhoa                 = 1.25 704 
rhow                 = 1000 705 
advection            = 1 706 
stopdepth            = 9999 707 
depfile              = sfincs.dep 708 
mskfile              = sfincs.msk 709 
indexfile            = sfincs.ind 710 
bndfile              = sfincs.bnd 711 
bzsfile              = sfincs.bzs 712 
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srcfile              = sfincs.src 713 
disfile              = sfincs.dis 714 
sbgfile              = sfincs_subgrid.nc 715 
amprfile             = Observations_Interpolate_600x600_halfhour_test.amr 716 
obsfile              = sfincs.obs 717 
inputformat          = bin 718 
outputformat         = net 719 
cd_nr                = 0 720 
geomskfile           = sfincs.gms 721 
hmaxfile             = hmax.dat 722 
hmaxgeofile          = hmaxgeo.dat 723 
zsfile               = zs.dat 724 
vmaxfile             = vmax.dat 725 
qinffile             = qinf_constanttime_spatialvary 726 
storevel             = 1 727 
  728 
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